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The influence of particle size on the tensile 
strength of particulate-filled polymers 
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The tensile strengths of a particulate-filled rigid polyurethane resin are presented at vary- 
ing volume fractions and a wide range of particle sizes. These results are compared with 
exisiting theories of the strength of particulate-filled composite systems. A linear relation- 
ship is proposed to exist between the mean particle diameter and the tensile strength at a 
given volume fraction. A method of normalizing data is presented which removes the 
stress-concentration effects of finite particle sizes and allows comparison of the data with 
a simple equation relating tensile strength and volume fraction. The effects of particle size 
and volume fraction in relation to crack propagation are discussed, and the proposed 
method of analysis is shown to give similar results when applied to published data. 

1. Introduction 
The inclusion of particulate fillers in polymeric 
materials is an established practice in the polymer 
industry. Their inclusion can enhance such proper- 
ties as modulus and fracture toughness, while 
reducing the overall cost of a component. The use 
of solid spherical glass fillers has been common in 
this field and a number of investigations have been 
made into their mechanical properties [1-5]. 

Interest has recently been shown in the use of 
hollow glass or thermoplastic microspheres as fillers 
for polymeric materials. The resulting composite 
materials, known as syntactic foams [6], are find- 
ing increasing use in such diverse applications as 
furniture [7], ablative heat shields [8], and in deep 
submergence vessels [9]. Their combination of low 
density, strength and modulus properties make 
them interesting materials for study. 

This paper describes the production of compo- 
sites by the inclusion of hollow and solid glass 
microspheres of various diameters and volume frac- 
tions in a rigid cross-linked polyurethane resin. The 
strength of these composites is evaluated with 
respect to the existing theories of particulate 
reinforcement. 

2. Theory 
The studies published on the experimental and 
theoretical strength relationships for polymeric 

materials filled with solid partictes [1-5, 10] have, 
in general, taken one of two main approaches in 
explaining the tensile strength variation with vol- 
ume fraction. 

One approach, as expressed by Sahu and Brout- 
man [10], is to assume that the composite fails 
when one element fails due to stress concentrations 
around the filler. It follows from this assumption, 
that the composite strength should decrease rapidly 
with the first addition of filler, and remain essen- 
tially at that level with further additions of filler. 
The experimental results presented by Sahu and 
Broutman [10] did not give good agreement with 
the theoretical predictions. 

The second approach is to assume that the 
strength of a particulate-filled polymeric composite 
is determined by the effective decrease in the cross- 
sectional area of the load-bearing polymer matrix 
due to the presence of the filler [2-5, 11]. Assum- 
ing no adhesion between the matrix and the spheres 
(i.e. no stress transfer), and no stress concentration 
effects, then 

O e = O r n ( 1 - - a ( 9  n) (1) 

where % and am are the tensile strength of the 
composite and matrix respectively, and ~ is the vol- 
ume fraction of filler, a and n are constants which 
depend on the particular geometric model of the 
composite and the assumed plane of fracture. In 
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the model in which spheres are randomly distrib- 
uted but the fracture path deviates through the 
equatorial plane of all spheres which are encoun- 
tered, then a = 1.21 and n = }. If the spheres are 
randomly distributed and the fracture path is per- 
fectly planar, (i.e. non-deviated), then a = 1.0 and 
n = 1.0. Most of the experimental investigations 
show an intermediate dependence of tensile 
strength on volume fraction between the upper 
bound of a = 1 . 0  and n = l . 0  and the lower 
bound ofa  = 1.21 and n = ~. 

Piggot and Leidner [12] have shown that an 
equation of the form 

oc = A am - b y  ( 2 )  

may be used to represent the experiment data in 
certain cases, where A is a factor expressing the 
stress concentration caused by the presence of 
spheres in the matrix and b is a constant. They 
have shown that Equation 2 can give almost ident- 
ical values to a two thirds power law expression, at 
volume fractions greater than 0.2. 

Little work has been published on the strength 
of hollow-sphere filled polymers. Okuno and 
Woodhams [13] have derived an equation for such 
systems which predicts a linear relationship 
between composite strength and volume fraction 
of filler. The basis of the relationship is the addit- 
ivity of the strengths of a polymer foam and the 
hollow sphere, which gives 

where ko a is the stress concentration factor, ag is 
the strength of the solid phase of the hollow 
sphere, ~bg and Cf are the volume fractions of the 
solid phase and void respectively. In this case it is 
assumed that there is sufficient stress transfer 
between the matrix and the spheres to cause frac- 
ture of the sphere walls in the fracture path. There 
is photographic evidence that this assumption is 
valid. 

None of the preceding equations take account, 
directly, of the influence of filler size on the 
strength of the composite. It is known that, for a 
given volume fraction, the strength is reduced as 
particle size is increased. Some workers [13] 
attribute this to an increase in the stress concen- 
tration factor with increase in particle size. 

A number of attempts have been made to apply 
a Hall-Petch [14-15] type of relationship to 
sphere filled polymer composites, at constant vol- 
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ume fraction of filler. This relationship was origin- 
ally derived to describe the dependence of the yield 
strength of a polycrystalline material on the recip- 
rocal of the square root of the grain size. Hojo e t  

aL [16] have shown a linear relationship between 
tensile strength and the reciprocal of the square 
root of the particle diameter. Alter [17] took pub- 
lished data for a number of thermoplastic poly- 
meric composites and showed a linear relationship 
between tensile strength and the reciprocal of the 
particle diameter. Alter proposed that this func- 
tion expressed a dependence of tensile strength on 
the surface-to-volume ratio of the filler. Baldwin 
[18] has shown that in the case of polycrystalline 
metals, tensile strength may vary directly with par- 
ticle diameter. 

So there appear to be three possible relafion- 
ships between fracture strength oe and mean par- 
ticle diameter d at a given volume fraction of par- 
ticles: 

a e = k d + c  (4) 

o e = k ' d  -1 + c '  (5) 

or % = k " d  -~- + c" ,  (6) 

where k, k', k", c, c', c" are the slopes and inter- 
cepts of the respective straight lines. 

3. Materials 
3.1. Matrix 
The matrix material was a highly cross-linked rigid 
polyurethane [1.9] thermosetting resin (ICI Dal- 
tomer 3) produced by the reaction of a diphenyl- 
methane di-isocyanate (ICI Polymeric grade DNR) 
with a low molar mass, branched oxypropylated 
glycerol (ICI Daltocast 3). 

To avoid the formation of bubbles due to the 
evolution of carbon dioxide in the resin, the polyol 
was dehydrated in v a c u o  at 110 ~ C before use. The 
isocyanate was also degassed in v a c u o  at room tem- 
perature to remove dissolved carbon dioxide and 
air. All equipment and fillers used in the prepar- 
ation of the resin and composites were carefully 
dried at 115 ~ C for 15 rain prior to use. 

The resin was produced by mixing, in approxi- 
mately stoichiometric ratio, the hot polyol with 
the cold isocyanate. The mixture was then cast 
into a mould consisting of two aluminium sheets 
separated by a rubber gasket. After gelation, which 
occurred in approximately 5 min, the resin was 
cured in an oven for 45 min at 110 ~ C. 



TAB LE I Average diameters and densities of the fillers 

d p 
(/~m) (kg m- 3 ) 

Solid Spheres 21 2480 
85 2480 

216 2480 

Hollow Spheres 43 485 
55 485 
77 485 
80 540 

116 705 
141 705 

3.2. Fillers 
The solid spheres were obtained without adhesion 
promoter from Plastichem Ltd., Esher, Surrey, 
England~ The hollow microspheres were obtained 
without adhesion promoter from Fillite Ltd., 
Runcorn, Cheshire, England. 

Average particle diameters d and densities p are 
shown in Table I. 

3.3. Preparation of composites 
Composites were produced by mixing a weighed 
quantity of liquid resin with a weighed quantity of 
filler to provide a uniform slurry which was cast 
into a pre-heated mould. The cure cycle was ident- 
ical to that of the unfilled resin. 
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Figure 1 Tensi le  s t r eng th  a e as a f u n c t i o n  of  v o l u m e  frac-  
t i o n  q~ for  so l id-sphere  f i l led compos i t e s .  
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4. Experimental procedure 
Test pieces were cut from the cast sheets with a 80 
bandsaw, the cut edges being carefully ground with 
silicon carbide paper. The volume fraction of filler 70 
was calculated from the measured density of 
impact test pieces, assuming volume additivity. 60 
Tensile strength was measured on a Howden Tens- 
ometer with specimens to BS.305A with a cross- E 
head speed of 30mmmin -1. An average of at least ~_ 50 
three specimens, usually five, for each volume frac- 
tion were taken; exceptions to this were composites 40 
containing solid beads of 216/1m diameter where 
gross sedimentation reduced the number of speci- 30 
mens to one. Average particle size was computed 
using a Cambridge Metals Research 'Quantimet' 

20 
quantitative microscope. Particle densities were 
determined using a pycnometer. 

5. Results 
The tensile strengths of solid-sphere filled compo- 
sites are shown as a function of volume fraction of 
filler in Fig. 1. Figs. 2-4 show the tensile strength 
of hollow-sphere filled composites as a function of 
volume fraction of filler. In all cases the tensile 
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Figure 2 Tensi le  s t r eng th  a c as a f u n c t i o n  o f  v o l u m e  frac-  
t i o n  q5 fo r  ho l l ow-sphe re  f i l led  c o m p o s i t e s .  
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Figure  3 Tensile s t rength a e as a func t ion  o f  volume frac- 
t ion 4~ for hollow-sphere filled composites.  
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Figure  4 Tensile s t rength o e as a func t ion  o f  volume frac- 
t ion ~ for hollow-sphere filled composites.  

strength decreases with increasing volume fraction. 
In order to investigate the effect of particle size on 
the tensile strength, values of composite tensile 
strength, as represented by points on the smooth 
curves drawn in Fig. 1-4, were taken for selected 
volume fractions. An attempt was made to fit these 
points by the Equations 4, 5 and 6 at each selected 

1 6 0 8  

T A B L E  II Correlat ion o f  exper imental  data with Equa- 
t ion 4. 

a e = k c l + c ( 4 )  

q~ Slope k Intercept  c Correlat ion 
(GN m-3)  (MN m -  2) Coefficient 

.05 - - 1 3 8  87.60 - - 0 . 9 2  

.1 - - 1 6 7  82.48 - - 0 . 9 4  

.15 - -  185 78.53 - -  0.97 
�9 2 - - 1 8 0  73.45 - - 0 . 9 9  
.3 - - 1 1 4  59.47 - - 0 . 9 8  
.4 - - 6 9  47.81 - -  0.96 
�9 5 - - 3 2  38.58 - - 0 . 8 1  

T A B L E  I I I  Correlation o f  exper imenta l  d a t a w i t h  Equa- 
t ion 5. 

% = k ' d  -I + c' (5) 

q~ Slope k '  Intercept  c' Correlation 
(N m -  ~ ) (MN m-5)  Coefficient 

.05 322 71.12 0.72 

.1 409 62.18 0.77 

.15 430 55.75 0.80 

.2 413 50.42 0.84 

.3 363 42.36 0.89 

.4 840 32.06 0.95 

T A B  LE IV Correlation o f  exper imenta l  data with Equa- 
t ion 6. 

r L 
a e = k ' d - 2 + c " ( 6 )  

q~ Slope k "  Intercept  c" Correlation 
(kN m-3/2) (MN m -2) Coefficient 

.05 107 63.19 0.78 

.1 135 52.33 0.83 

.15 143 45.40 0.86 

.2 135 40.94 0.88 

.3 113 34.99 0.93 

.4 151 25.52 0.92 

volume fraction of filler. The resultant values of 
the slopes k, k', k", and the intercepts c, c', c" 
together with the correlation coefficients are shown 
in Tables II, III and IV. It can be seen that the 
best correlation between e~perimental data and 
theoretical equations is witla Equation 4. Typical 
graphical representations of this procedure are 
shown in Figs. 5-7. 

6. Discussion 
The dependence of tensile strength on volume frac- 
tion for the sphere filled polyurethane composites 
follow a family of curves lying below the upper 
bound of Equation 1, (Fig. 8). 

The factors thought to influence the variation 
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Figure 5 Tensile strength % as a function of average par- 
ticle diameter d at two volume fractions. 
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Figure 6 Tensile strength a e as a function of d - 1 at two 
volume fractions. 

o f  tensile strength with volume fraction of  filler are 
(1) the effective decrease in cross-sectional area of  
the load-bearing matrix,  (2) stress-concentrations 
set up by the presence of  the filler particles, (3) 
mode of  crack propagation through the composite 
during failure, (4) changes in modulus of  the 
composite due to the presence o f  filler. 

The composites containing the smallest spheres 
show behaviour closest to the upper bound in Fig. 
8, and as the size of  the spheres increase, the lower 

b o u n d  is approached.  Within the limits o f  the 
experiments reported,  the results given by  both  
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Figure 7 Tensile strength a e as a function of d-2 at two 
volume fractions. 
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Figure 8 Upper and Lower bounds for the variation of 
Tensile strength % with volume fraction ~ as predicted by 
Equation 1. 

the solid and hollow spheres appear to belong to 
the same family of  curves. This would imply that 
whatever contributions are made to the tensile 
strength of  the composite by (a) adhesion between 
the spheres and the matr ix or (b) strength of the 
walls of  the hollow spheres are both  negligible in 
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Figure 9 SEM of solid-sphere filled composites containing 
21 #m diameter spheres, r = 0.13. 

comparison to the contribution made by the 
strength of the matrix, or that both contributions 
are approximately equal. The former idea is sup- 
ported by the fact that the spheres were not treated 
with an adhesion agent and SEMs show (Fig. 9) 
that little resin adheres to any of the solid spheres 
at the fracture surface. The hollow spheres (Fig. 
10) are also seen to contain many flaws and imper- 
fections in their walls, so may be presumed to 
make only a small contribution to the tensile 
strength of the matrix. The latter idea is supported 

Figure 10 SEM of hollow-sphere filled composites contain- 
ing 116/~m diameter spheres, q~ = 0.18. 
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Figure 11 SEM of hollow-sphere filled composites contain- 
ing 80 ~m diameter spheres, 0 = 0.3. 

by Fig. 11, which shows that in the hollow-sphere 
filled composites some spheres are fractured and 
others are debonded, indicating that the two pro- 
cesses may be equally preferred. 

Linear equations such as those proposed by 
Piggot and Leidner [12] (Equation 2) or Okuno 
and Woodhams [13] (Equation 3) are seen to be 
ineffective in representing the data at low volume 
fractions of  fillers, but may be considered as useful 
empirical equations for use at medium to high vol- 
ume fractions of filler. 

The problems encountered in defining the 
relationship of tensile strength to particle size have 
been discussed in the case of polycrystalline metals 
[18]. It may be considered that the observed 
relationship between tensile strength and particle 
size is a result of the influence of sphere size on 
the Griffith flaw size within the composite. It has 
been shown that calculated flaw size increases 
rapidly with increasing particle size [20]. 

The intercepts c on the tensile strength axis 
from Table II may be taken to represent the 
hypothetical tensile strengths of composites con- 
taining spherical fillers of infinitely small diameter 
ac~ at a series of given volume fractions of filler. 
Normalized intercepts are plotted against volume 
fraction of filler in Fig. 12, and fairly good corre- 
lation is observed between the points and the pre- 
dicted upper bound of Equation 1. 

It can be seen from Table II that the dependence 
of tensile strength on particle size increases with 
volume fraction of spheres to a maximum in the 



region of 0.2 volume fraction, and decreases sub- 
sequently. This depedence is illustrated by plotting 
the slope, k, from the table against volume fraction 
of spheres in Fig. 13. Published data of Mallick 
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Figure 12 The ratio of  intercept tensile strength aCi to un- 
filled matrix tensile strength a m as a function of  volume 
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Figure 13 The slope k from Table I I  as a function of  vol- 
ume fraction q~ of filler. 

and Broutman [21], Lange and Radford [22], and 
Sahu and Broutman [23] show that glass-sphere 
filled brittle polymeric composites show an in- 
crease in fracture surface energy with increasing 
volume fraction up to a maximum at around 0.2 
volume fraction of spheres, and that the increase 
in fracture surface energy is greater, the smaller 
the particle size. As the volume fraction of fillers 
increases above 0.2 the fracture surface energies 
decrease and the differences in fracture surface 
energies given by spheres of varying sizes also de- 
creases. These results were explained [20-25] by 
assuming that as the crack front meets the dis- 
persed phase it is momentarily pinned between 
two particles. Then, in a manner analogous to a 
pinned dislocation in crystalline materials, the 
crack front bows out and meets on both sides of 
the particle to break away. As the distance between 
the particles decreases, consistent with either an 
increase in volume fraction of spheres or a decrease 
in sphere diameter, the radius to which the crack 
front is bent also decreases. Therefore, the force 
required to bend the crack front into the arc of a 
circle also increases until crack pinning becomes 
unfeasible energetically, compared with other 
modes of crack propagation. At this point, crack 
propagation becomes continuous rather than dis- 
continuous and fracture surface energy begins to 
decrease. The contribution of this fracture surface 
energy, which varies with volume fraction and par- 
ticle size, may partially explain the variable slope 
of tensile strength against particle size shown in 
Fig. 13. 
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Figure 14 Tensile strength a e as a function of  mean par- 
ticle diameter d (Leidner and Woodham's data). 
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To investigate the possibility of applying the 
same approach with published results for other 
systems, the data of Leidner and Woodhams [26] 
for a polyester/glass system were analysed in a 
similar manner to that presented in this paper. In 
the absence of any data on the average particle 
sizes, the mid-points of the stated size ranges were 
taken as the mean particle diameters. A typical 
graph of tensile strength against mean particle 
diameter is shown in Fig. 14. Fig. 15 shows a plot 

1.0 

0.9 

0.8 

0.7 

# 06 

0.5 

0.4 

\ .  
\ 

- -  UPPER BOUND 
Equation 1 

0 . 3  i i i i i 

0 0.1 0.2 0.3 0.4 0.5 
| 

Figure 15 The ratio of  Intercept  tensile s t rength crCi to 
unfilled matr ix  tensile strength as a func t ion  o f  volume 
fraction ~ o f  filler (Leidner and Woodham ' s  data).  
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fdler (Leidner and Woodharn 's  data). 

1612 

of normalized intercepts eci calculated from 
Equation 4 against volume fraction of spheres. The 
points show good agreement with the upper bound 
of Equation 1. Fig. 16 shows a plot of k, the slope 
of tensile strength against particle diameter, against 
volume fraction of spheres. Again, a maximum is 
visible at 0.15 to 0.2 volume fraction of spheres. 

It is proposed, therefore, that the strength of a 
particulate-filled polymeric composite can be 
expressed by 

ac = ore(1 -- r -- k(ga)d 

where d is the average particle diameter and k is 
the slope of the plot of tensile strength against 
mean particle diameter at the particular volume 
fraction in question. 

7. Conclusions 
In the case of low adhesion between filler and 
matrix, the tensile strengths of solid- and hollow- 
glass sphere filled rigid polyurethane composites 
decrease with increasing volume fraction of filler; 
greater decreases in tensile strengths being shown 
by the larger particles. At fixed volume fractions 
of fillers, there appear to be linear relationships 
between tensile strength and particle diameter. The 
intercepts obtained from the above relationships, 
representing the hypothetical tensile strengths 
obtainable with fillers of infinitely small particle 
size, when plotted against volume fraction, show 
good agreement with the upper bound of Equation 
1. This form of Equation 1 simply represents the 
effective decrease in tensile strength due to the 
decrease in cross-sectional area of the load-bearing 
polymer, in the absence of any allowance for stress 
concentration factors caused by the presence of 
the spheres. The dependence of tensile strength on 
particle diameter passes through a maximum at 
about 0.2 volume fraction of spheres, which may 
reflect a change in crack propagation mode as the 
amount of filler increases. The published data of 
Leidner and Woodhams can be analysed to yield 
similar results. 
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